APPLICATION OF THE CENTRE MANIFOLD THEORY IN NON-LINEAR AEROELASTICITY

L. Liu and Y. S. Wong
Department of Mathematical Sciences, University of Alberta, Edmonton, Canada T6G 2G1
AND
B. H. K. Lee
Institute for Aerospace Research, National Research Council, Ottawa, Ontario, Canada K1A 0R6

(Received 21 June 1999, and in final form 22 December 1999)

Abstract

In this study, a frequency relation for limit cycle oscillations of a two-degree-of-freedom aeroelastic system with structural non-linearities represented by cubic restoring spring forces is derived. The centre manifold theory is applied to reduce the original system of nine-dimensional first order ordinary differential equations to a governing system in two dimensions near the bifurcation point. The principle of normal form is used to simplify the non-linear terms of the lower dimensional system. Using the frequency relation and the amplitude-frequency relationships derived from a previous study, limit cycle oscillations (LCOs) for self-excited systems can be predicted analytically. The mathematical technique proposed here has been applied to investigate LCO near a Hopf-bifurcation for an aeroelastic system with cubic restoring forces. Not only that an excellent agreement is obtained compared to the numerical results from solving the original system of eight non-linear differential equations by Runge-Kutta time integration scheme, but we also demonstrate that the use of a mathematical approach leads to a better understanding of non-linear aeroelasticity.

(C) 2000 Academic Press

1. INTRODUCTION

In dynamic response investigations of aircraft structures, classical theories assume linear aerodynamics and linear structures, so that the aeroelastic equations can be reduced to a set of linear equations that can be readily solved. However, in reality non-linearities are present in one form or the other. In many instances, linear aerodynamics give insufficiently accurate results. For example, when the airspeed approaches transonic Mach numbers, linear theory fails to detect the transonic dip and other phenomena associated with the presence of shock waves. Aircraft structures can have non-linearities that affect not only the flutter speed, but also the characteristics of the dynamical response. Hence, to obtain a better understanding of the physical and mathematical aspect of non-linear aeroelasticity, recent research [1, 17] has been directed towards the study of these two types of non-linearities.

Structural non-linearities that occur in the restoring forces can be treated as non-linear springs, such as springs with free-play, hysteresis or cubic non-linearities. These types of non-linearities have been investigated by Woolston et al. [2] for a two-dimensional airfoil performing pitching and plunging motions using an analog computer. There are serious drawbacks in the use of an analog computer to study non-linear flutter, and the accuracy is
often not as high as one would desire in order to investigate the characteristics of the airfoil motion fully. Lee and LeBlanc [3] analyzed numerically a two-degree-of-freedom (d.o.f.) airfoil motion with a cubic non-linearity in the pitch degree of freedom. O'Neil et al. [4] performed experiments on the existence of limit cycle oscillation (LCO) of an airfoil with cubic structural non-linearities and compared their results with numerical simulations such as those given by Lee and LeBlanc. Price et al. [5] studied cubic non-linearity using numerical and describing function techniques. Describing function techniques [16] cannot be used to investigate the effects of initial conditions but can be used to provide good predictions of magnitudes of LCO responses. Gong et al. [6] investigated analytically and numerically the dynamic response of a coupled two-d.o.f. system with cubic non-linearities. They showed that harmonic, quasiperiodic and chaotic motions can exist for system parameters that correspond to those commonly used to analyze aeroelastic behavior of aircraft structures.

In this study, we concentrate on the LCOs of a two-d.o.f. aeroelastic system with structural non-linearity represented by cubic restoring spring forces. When the system is subject to an external forcing term with driving frequency ω, Lee et al. [7] derive analytical formulae that provide amplitude-frequency relationships for the pitch and plunge motion respectively. However, for a self-excited system (i.e., in the absence of external forcing term), the reference frequency ω is not known, and the motion cannot be determined from the amplitude-frequency relationships they derived. Several procedures were discussed in Reference [7] to estimate the frequency value ω for the self-excited system, but the results were not satisfactory except when the velocity U^{*} is very close to the linear flutter speed U_{L}^{*}. To overcome this limitation in Lee et al. [7], we apply the centre manifold theory of Carr [8] and the principle of normal form [9,15] to derive a frequency relation for self-excited motion of a two-d.o.f. non-linear system. Using the frequency relation together with the amplitude-frequency relationships, LCOs for the self-excited system can be predicted analytically. Numerical simulations are carried out to compare the results with those obtained from the analytical analysis.

2. MODEL FORMULATION

In Figure 1, we show schematically the notations used in the analysis of a two-d.o.f. airfoil oscillating in pitch and in plunge. The plunging deflection is denoted by h, positive in the downward direction, and α is the pitch angle about the elastic axis, positive with nose up. The elastic axis is located at a distance $a_{h} b$ from the midchord, while the mass centre is located at a distance $x_{\alpha} b$ from the elastic axis. Both distances are positive when measured towards the trailing edge of the airfoil. The aeroelastic equations of motion including the structure non-linearities with subsonic aerodynamics are given as [10]

$$
\begin{align*}
\xi^{\prime \prime}+x_{a} \alpha^{\prime \prime}+2 \zeta_{\xi} \frac{\bar{\omega}}{U^{*}} \xi^{\prime}+\left(\frac{\bar{\omega}}{U^{*}}\right)^{2} G(\xi) & =-\frac{1}{\pi \mu} C_{L}(\tau)+\frac{P(\tau) b}{m U^{2}} \\
\frac{x_{a}}{r_{\alpha}^{2}} \xi^{\prime \prime}+\alpha^{\prime \prime}+2 \zeta_{\alpha} \frac{1}{U^{*}} \alpha^{\prime}+\left(\frac{1}{U^{*}}\right)^{2} M(\alpha) & =\frac{2}{\pi \mu r_{\alpha}^{2}} C_{M}(\tau)+\frac{Q(\tau)}{m U^{2} r_{\alpha}^{2}}, \tag{1}
\end{align*}
$$

where $\xi=h / b$ is the non-dimensional displacement of the elastic axis and the ' denotes differentiation with respect to the non-dimensional time τ defined as $\tau=U t / b . U^{*}$ is a non-dimensional velocity defined as $U^{*}=U /\left(b \omega_{\alpha}\right)$, and $\bar{\omega}$ is given by $\bar{\omega}=\omega_{\xi} / \omega_{\alpha}$, where ω_{ξ} and ω_{α} are the natural frequencies of the uncoupled plunging and pitching modes

Figure 1. Two-degree-of-freedom airfoil motion.
respectively. ζ_{ξ} and ζ_{α} are the damping ratios, and r_{α} is the radius of gyration about the elastic axis. $G(\xi)$ and $M(\alpha)$ are the non-linear plunge and pitch stiffness terms respectively. $C_{L}(\tau)$ and $C_{M}(\tau)$ are the lift and pitching moment coefficients respectively. For incompressible flow, Fung [11] gives the following expressions for $C_{L}(\tau)$ and $C_{M}(\tau)$:

$$
\begin{aligned}
C_{L}(\tau)= & \pi\left(\xi^{\prime \prime}-a_{h} \alpha^{\prime \prime}+\alpha^{\prime}\right)+2 \pi\left\{\alpha(0)+\xi^{\prime}(0)+\left(\frac{1}{2}-a_{h}\right) \alpha^{\prime}(0)\right\} \phi(\tau) \\
& +2 \pi \int_{0}^{\tau} \phi(\tau-\sigma)\left(\alpha^{\prime}(\sigma)+\xi^{\prime \prime}(\sigma)+\left(\frac{1}{2}-a_{h}\right) \alpha^{\prime \prime}(\sigma)\right) \mathrm{d} \sigma, \\
C_{M}(\tau)= & \pi\left(\frac{1}{2}+a_{h}\right)\left\{\alpha(0)+\xi^{\prime}(0)+\left(\frac{1}{2}-a_{h}\right) \alpha^{\prime}(0)\right\} \phi(\tau) \\
& +\pi\left(\frac{1}{2}+a_{h}\right) \int_{0}^{\tau} \phi(\tau-\sigma)\left\{\alpha^{\prime}(\sigma)+\xi^{\prime \prime}(\sigma)+\left(\frac{1}{2}-a_{h}\right) \alpha^{\prime \prime}(\sigma)\right\} \mathrm{d} \sigma \\
& +\frac{\pi}{2} a_{h}\left(\xi^{\prime \prime}-a_{h} \alpha^{\prime \prime}\right)-\left(\frac{1}{2}-a_{h}\right) \frac{\pi}{2} \alpha^{\prime}-\frac{\pi}{16} \alpha^{\prime \prime},
\end{aligned}
$$

where the Wagner's function $\phi(\tau)$ is given by

$$
\phi(\tau)=1-\psi_{1} \mathrm{e}^{-\varepsilon_{1} \tau}-\psi_{2} \mathrm{e}^{-\varepsilon_{2} \tau}
$$

and the constants $\psi_{1}=0.165, \psi_{2}=0.335, \varepsilon_{1}=0.0455$, and $\varepsilon_{2}=0.3$ are obtained from Jones [12]. $P(\tau)$ and $Q(\tau)$ are the externally applied forces and moments respectively.

Due to the existence of the integral terms in the integro-differential equations (1), it is difficult to study the dynamic behavior of the system analytically. To eliminate the integral terms, Lee et al. [10] introduced four new variables:

$$
w_{1}=\int_{0}^{\tau} \mathrm{e}^{-\varepsilon_{1}(\tau-\sigma)} \alpha(\sigma) \mathrm{d} \sigma, \quad w_{2}=\int_{0}^{\tau} \mathrm{e}^{-\varepsilon_{2}(\tau-\sigma)} \alpha(\sigma) \mathrm{d} \sigma,
$$

$$
w_{3}=\int_{0}^{\tau} \mathrm{e}^{-\varepsilon_{1}(\tau-\sigma)} \xi(\sigma) \mathrm{d} \sigma, \quad w_{4}=\int_{0}^{\tau} \mathrm{e}^{-\varepsilon_{2}(\tau-\sigma)} \xi(\sigma) \mathrm{d} \sigma .
$$

Then, the system (1) can be rewritten in a general form containing only differential operators as

$$
\begin{align*}
c_{0} \xi^{\prime \prime} & +c_{1} \alpha^{\prime \prime}+\left(c_{2}+2 \zeta_{\xi} \frac{\bar{\omega}}{U^{*}}\right) \xi^{\prime}+c_{3} \alpha^{\prime}+c_{4} \xi+c_{5} \alpha+c_{6} w_{1}+c_{7} w_{2}+c_{8} w_{3} \\
& +c_{9} w_{4}+\left(\frac{\bar{\omega}}{U^{*}}\right)^{2} G(\xi)=f(\tau) \\
d_{0} \xi^{\prime \prime} & +d_{1} \alpha^{\prime \prime}+d_{2} \xi^{\prime}+\left(d_{3}+2 \zeta_{\alpha} \frac{1}{U^{*}}\right) \alpha^{\prime}+d_{4} \xi+d_{5} \alpha+d_{6} w_{1}+d_{7} w_{2}+d_{8} w_{3} \\
& +d_{9} w_{4}+\left(\frac{1}{U^{*}}\right)^{2} M(\alpha)=g(\tau) \tag{2}
\end{align*}
$$

The coefficients $c_{0}, c_{1}, \ldots, c_{9}, d_{0}, d_{1}, \ldots, d_{9}$ are given in Appendix A. $f(\tau)$ and $g(\tau)$ are functions depending on initial conditions, Wagner's function and the forcing terms, namely,

$$
\begin{aligned}
& f(\tau)=\frac{2}{\mu}\left(\left(\frac{1}{2}-a_{h}\right) \alpha(0)+\xi(0)\right)\left(\psi_{1} \varepsilon_{1} \mathrm{e}^{-\varepsilon_{1} \tau}+\psi_{2} \varepsilon_{2} \mathrm{e}^{-\varepsilon_{2} \tau}\right)+\frac{P(\tau) b}{m U^{2}} \\
& g(\tau)=-\frac{\left(1+2 a_{h}\right)}{2 r_{\alpha}^{2}} f(\tau)+\frac{Q(\tau)}{m U^{2} r_{\alpha}^{2}}
\end{aligned}
$$

By introducing a variable vector $X=\left(x_{1}, x_{2}, \ldots, x_{8}\right)^{\mathrm{T}}$, with $x_{1}=\alpha, x_{2}=\alpha^{\prime}, x_{3}=\xi, x_{4}=\xi^{\prime}$, $x_{5}=w_{1}, x_{6}=w_{2}, x_{7}=w_{3}, x_{8}=w_{4}$, the coupled equations (2) can be written as a set of eight first order ordinary differential equations:

$$
X^{\prime}=f(X, \tau) .
$$

This approach allows existing methods suitable for the study of ordinary differential equations to be used in the analysis. In this paper, we assume that there is no external forcing, i.e., $Q(\tau)=P(\tau)=0$ in equation (1). For large values of τ when transients are damped out and steady solutions are obtained, $f(\tau)=0$ and $g(\tau)=0$. Thus, the system can be expressed as $X^{\prime}=f(X)$. In terms of vector components, equations (2) can be expressed as

$$
\begin{aligned}
x_{1}^{\prime}= & x_{2} \\
x_{2}^{\prime}= & a_{21} x_{1}+\left(a_{22}-2 j c_{0} \zeta_{\alpha} \frac{1}{U^{*}}\right) x_{2}+a_{23} x_{3}+\left(a_{24}+2 j d_{0} \zeta_{\xi} \frac{\bar{\omega}}{U^{*}}\right) x_{4}+a_{25} x_{5}+a_{26} x_{6} \\
& +a_{27} x_{7}+a_{28} x_{8}+j\left(d_{0}\left(\frac{\bar{\omega}}{U^{*}}\right)^{2} G\left(x_{3}\right)-c_{0}\left(\frac{1}{U^{*}}\right)^{2} M\left(x_{1}\right)\right), \\
x_{3}^{\prime}= & x_{4}
\end{aligned}
$$

$$
\begin{align*}
x_{4}^{\prime}= & a_{41} x_{1}+\left(a_{42}+2 j c_{1} \zeta_{\alpha} \frac{1}{U^{*}}\right) x_{2}+a_{43} x_{3}+\left(a_{44}-2 j d_{1} \zeta_{\xi} \frac{\bar{\omega}}{U^{*}}\right) x_{4}+a_{45} x_{5}+a_{46} x_{6} \\
& +a_{47} x_{7}+a_{48} x_{8}+j\left(c_{1}\left(\frac{1}{U^{*}}\right)^{2} M\left(x_{1}\right)-d_{1}\left(\frac{\bar{\omega}}{U^{*}}\right)^{2} G\left(x_{3}\right)\right), \\
x_{5}^{\prime}= & x_{1}-\varepsilon_{1} x_{5}, \quad x_{6}^{\prime}=x_{1}-\varepsilon_{2} x_{6}, \quad x_{7}^{\prime}=x_{3}-\varepsilon_{1} x_{7}, \quad x_{8}^{\prime}=x_{3}-\varepsilon_{2} x_{8} . \tag{3}
\end{align*}
$$

The expressions for $j, a_{21}, \ldots, a_{28}, a_{41}, \ldots, a_{48}$ are given in Appendix B.
In this paper, the structural non-linearities are represented by cubic functions $M(\alpha)$ and $G(\xi)$, such that

$$
\begin{equation*}
M(\alpha)=\beta_{\alpha} \alpha+\beta_{\alpha^{3}} \alpha^{3}, \quad G(\xi)=\beta_{\xi} \xi+\beta_{\xi^{3}} \xi^{3}, \tag{4}
\end{equation*}
$$

where $\beta_{\alpha}, \beta_{\alpha^{3}}, \beta_{\xi}$ and $\beta_{\xi^{3}}$ are constants. The analysis and the results for $M(\alpha)$ or $G(\xi)$ represented by bilinear and hysteresis functions will be reported in a separate paper [13].

3. CENTRE MANIFOLD AND NORMAL FORM

Following the analysis presented by Lee et al. [7], the bifurcation parameter is associated with U^{*}, and the bifurcation value is U_{L}^{*}, which is the value of the linear flutter speed. To study the dynamic response of the system, we introduce a perturbation parameter δ such that $1 / U^{*}=(1-\delta) / U_{L}^{*}$. Substituting this expression into equation (3), an autonomous system with the perturbation parameter is obtained, i.e., $X^{\prime}=f(X ; \delta)$. The equilibrium points are then evaluated from $f(X ; \delta)=0$. Without loss in generality, we assume the origin to be the equilibrium point. The original system (3) can now be rewritten as

$$
\begin{equation*}
X^{\prime}=A X+B(\delta) X+(1-\delta)^{2} F(X), \quad \delta^{\prime}=0 \tag{5}
\end{equation*}
$$

The matrix A is an 8×8 Jacobian matrix evaluated at the equilibrium point and at the bifurcation value (i.e, $\delta=0$). The second and the third terms of equation (5) are non-linear in X and δ. The expressions for $A, B(\delta)$ and F are given in Appendix C.

The matrix A has one pair of purely imaginary eigenvalues $\lambda_{1}=\mathrm{i} \omega_{0}, \bar{\lambda}_{1}=-\mathrm{i} \omega_{0}$, one pair of complex eigenvalues with negative real parts, $\lambda_{2}=b+\mathrm{i} c, \bar{\lambda}_{2}=b-\mathrm{i} c$, and four negative real eigenvalues $\lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}$. From the theory of centre manifold, it is possible to reduce the dimensionality of the system. To obtain the centre manifold, we first transform system (5) to a standard form. A transformation matrix P is obtained from the eigenspace of A, such that $P^{-1} A P=J$, where J is the Jordan canonical form of A containing all the
eigenvalues of A :

$$
\left.J=\left\lvert\, \begin{array}{cccccccc}
0 & \omega_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\omega_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & c & 0 & 0 & 0 & 0 \\
0 & 0 & -c & b & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{6}
\end{array}\right.\right)
$$

Introducing a new variable, $Y=P^{-1} X=\left(y_{1}, y_{2}, \ldots, y_{8}\right)^{\mathrm{T}}$, system (5) becomes

$$
\begin{equation*}
Y^{\prime}=J Y-P^{-1} B(\delta) P Y+(1-\delta)^{2} P^{-1} F(P \cdot Y), \quad \delta^{\prime}=0 \tag{6}
\end{equation*}
$$

The dynamic response of system (6), which is nine dimensional, can be investigated through an invariant two-dimensional system. Defining

$$
J_{A}=\left(\begin{array}{ccc}
0 & \omega_{0} & 0 \\
-\omega_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad J_{B}=\left(\begin{array}{cccccc}
b & c & 0 & 0 & 0 & 0 \\
-c & b & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{5} & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda_{6}
\end{array}\right)
$$

and $Y_{A}=\left(y_{1}, y_{2}, \delta\right)^{\mathrm{T}}, Y_{B}=\left(y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}\right)^{\mathrm{T}}$, system (6) can be rewritten as

$$
\begin{equation*}
Y_{A}^{\prime}=J_{A} Y_{A}+F_{A}\left(Y_{A}, Y_{B}\right), \quad Y_{B}^{\prime}=J_{B} Y_{B}+F_{B}\left(Y_{A}, Y_{B}\right) \tag{7}
\end{equation*}
$$

where F_{A} and F_{B} are non-linear functions of Y_{A} and Y_{B}. Here, we start from the second order terms since the first order terms have already been included in the first part associated with Y_{A} and Y_{B}. J_{A} has one pair of purely imaginary eigenvalues and one zero eigenvalue. All eigenvalues of J_{B} have negative real parts. From the centre manifold theorem given by Carr [8], there exists a centre manifold H for equation (7), i.e., $Y_{B}=H\left(Y_{A}\right)$. The flow of equation (7) near the equilibrium point is governed by $Y_{A}^{\prime}=J_{A} Y_{A}+F_{A}\left(Y_{A}, H\left(Y_{A}\right)\right)$, which is a three-dimensional system. Theoretically, the function H can be solved from the following function equation:

$$
\begin{equation*}
\frac{\partial}{\partial Y_{A}} H\left(Y_{A}\right)\left(J_{A} Y_{A}+F_{A}\left(Y_{A}, H\left(Y_{A}\right)\right)=J_{B} H\left(Y_{A}\right)+F_{B}\left(Y_{A}, H\left(Y_{A}\right)\right)\right. \tag{8}
\end{equation*}
$$

However, the solution for the above equation with the exact expression of the function H is as difficult to obtain as the solution for the original system. Following another important result given by Carr [8], the centre manifold H can be approximated to any desired degree of accuracy. The polynomial approximation of the centre manifold H is assumed, and is denoted by $\boldsymbol{\Phi}=\left(\phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}, \phi_{7}, \phi_{8}\right)^{\mathrm{T}}$, in which

$$
\begin{equation*}
\phi_{i}\left(y_{1}, y_{2}, \delta\right)=h_{i 1} y_{1} \delta+h_{i 2} y_{2} \delta+h_{i 3} y_{1}^{2}+h_{i 4} y_{2}^{2}+h_{i 5} \delta^{2}+h_{i 6} y_{1} y_{2}, \quad i=3,4,5,6,7,8 \tag{9}
\end{equation*}
$$

where $h_{31}, h_{32}, \ldots, h_{36}, \ldots, h_{41}, \ldots, \ldots, h_{86}$ are constants to be determined from using the centre mainfold theory. Substituting equation (9) into equation (8) and replacing $H\left(Y_{A}\right)$ by its polynomial approximation $\boldsymbol{\Phi}\left(Y_{A}\right)$, we obtain

$$
\frac{\partial}{\partial Y_{A}} \boldsymbol{\Phi}\left(Y_{A}\right)\left(J_{A} Y_{A}+F_{A}\left(Y_{A}, \boldsymbol{\Phi}\left(Y_{A}\right)\right)=J_{B} \boldsymbol{\Phi}\left(Y_{A}\right)+F_{B}\left(Y_{A}, \boldsymbol{\Phi}\left(Y_{A}\right)\right) .\right.
$$

Equating the coefficients associated with $y_{1} \delta, y_{2} \delta, y_{1}^{2}, y_{2}^{2}, \delta^{2}$, and $y_{1} y_{2}$, we obtain a system of 36 algebraic equations with $h_{31}, h_{32}, \ldots, h_{86}$ as variables. These equations can be solved by a standard computer problem such as Maple [14]. Extension to a higher order approximation of center manifold is straightforward, but the algebra becomes considerably more complex.

Once the expression of the center manifold is obtained, the original system is reduced to a three-dimensional system on the center manifold. Since the solution of the reduced system is not exactly identical to Y_{A}, we denote the corresponding solutions for y_{1} and y_{2} by u_{1} and u_{2} respectively. Regarding δ as a parameter, the system is reduced to two dimensions:

$$
\begin{equation*}
u_{1}^{\prime}=\omega_{0} u_{2}+g_{1}\left(u_{1}, u_{2}, \delta\right), \quad u_{2}^{\prime}=-\omega_{0} u_{1}+g_{2}\left(u_{1}, u_{2}, \delta\right), \tag{10}
\end{equation*}
$$

where g_{1} and g_{2} contain the non-linear terms as functions of u_{1}, u_{2} and δ. An important result in the application of the centre manifold theorem is that the asymptotic behavior of the solutions near the equilibrium point and the bifurcation value of the original eight-dimensional system can be studied by analyzing the reduced two-dimensional system given in equation (10).

To simplify equation (10) for symbolic computations, we rewrite the system as

$$
\begin{equation*}
U^{\prime}=B U+F(U) \tag{11}
\end{equation*}
$$

with

$$
B=\left(\begin{array}{ll}
b_{11}(\delta) & b_{12}(\delta) \\
b_{21}(\delta) & b_{22}(\delta)
\end{array}\right), \quad F(U)=\binom{f_{1}\left(u_{1}, u_{2}, \delta\right)}{f_{2}\left(u_{1}, u_{2}, \delta\right)}
$$

where $U=\left(u_{1}, u_{2}\right)^{\mathrm{T}}$. The first term $B U$ is the linear part for u_{1}, u_{2}, and the second term $F(U)$ is the non-linear part of u_{1}, u_{2}.

Now define the transformation matrices

$$
N P=\frac{1}{\sqrt{b_{12}^{2}+\theta^{2}+\left(\alpha-b_{11}\right)^{2}}}\left(\begin{array}{cc}
0 & b_{12} \\
\theta & \alpha-b_{11}
\end{array}\right)
$$

and

$$
N P^{-1}=\frac{\sqrt{b_{12}+\theta^{2}+\left(\alpha-b_{11}\right)^{2}}}{b_{12} \theta}\left(\begin{array}{cc}
-\alpha+b_{11} & b_{12} \\
\theta & 0
\end{array}\right)
$$

where $\alpha=\frac{1}{2}\left(b_{11}+b_{12}\right)$ and $\theta=\sqrt{b_{11} b_{22}-b_{12} b_{21}-\alpha^{2}}$. By introducing a new variable $Y=N P^{-1} U=\left(y_{1}, y_{2}\right)^{\mathrm{T}}$, system (11) can be transformed into the standard form

$$
Y^{\prime}=J Y+N P^{-1} F(N P \cdot Y) \quad \text { with } J=\left(\begin{array}{cc}
\alpha & \theta \\
-\theta & \alpha
\end{array}\right)
$$

i.e.,

$$
\begin{equation*}
y_{1}^{\prime}=\alpha y_{1}+\theta y_{2}+F_{1}\left(y_{1}, y_{2}, \delta\right), \quad y_{2}^{\prime}=-\theta y_{1}+\alpha y_{2}+F_{2}\left(y_{1}, y_{2}, \delta\right) \tag{12}
\end{equation*}
$$

where F_{1}, F_{2} are non-linear terms of y_{1} and y_{2}, and α and θ are related to the parameter δ.
The complex form of system (12) can be written as

$$
Z^{\prime}=\lambda Z+h(Z, \bar{Z})
$$

where $\lambda(\delta)=\alpha(\delta)+\mathrm{i} \theta(\delta)$, and $Z=y_{1}+\mathrm{i} y_{2} . h(Z, \bar{Z})$ includes non-linearities of Z and \bar{Z}.
By the principle of normal form, the near identity transformation is introduced:

$$
Z=V+g(V, \bar{V})
$$

where V is a new variable, and g includes the second and third order non-linearities of V and \bar{V}. The normal form of the system (11) can be expressed as

$$
V^{\prime}=\lambda V+F_{21} V^{2} \bar{V}
$$

where F_{21} is a complex number whose value is related to δ.
Taking $a(\delta)=\operatorname{Re}\left(F_{21}\right)$ and $b(\delta)=\operatorname{Im}\left(F_{21}\right)$, we express $V=r(\tau) * \mathrm{e}^{\omega(\tau)}$. The normal form in polar co-ordinates can be expressed as

$$
r^{\prime}=\alpha r+a r^{3}, \quad \omega^{\prime}=\theta+b r^{2}
$$

Expanding the coefficients α, θ, a and b at $\delta=0$, the above system becomes

$$
\begin{align*}
r^{\prime} & =\dot{\alpha}(0) \delta r+a(0) r^{3}=r\left(\dot{\alpha}(0) \delta+a(0) r^{2}\right) \\
\omega^{\prime} & =\theta(0)+\dot{\theta}(0) \delta+b(0) r^{2}=(\theta(0)+\dot{\theta}(0) \delta)+b(0) r^{2} \tag{13}
\end{align*}
$$

Note that the prime denotes derivatives with respect to τ and the dot denotes derivatives with respect to δ. The stability of the fixed point and the periodic orbit can now be analyzed. Furthermore, the frequency of the limit cycle oscillations can be predicted from a frequency relation given by

$$
\begin{equation*}
\omega=\omega_{0}+\left(\dot{\theta}(0)-\frac{b(0) \dot{\alpha}(0)}{a(0)}\right) \delta . \tag{14}
\end{equation*}
$$

The amplitude of the motion of the original system can also be predicted from the reduced system on the center manifold. However, due to errors introduced in approximating the centre manifold, the predicted amplitude value may not be sufficiently accurate.

4. AMPLITUDES OF LIMIT CYCLE OSCILLATIONS

To determine the amplitudes of LCOs associated with the pitch and plunge motions, we assume

$$
\begin{align*}
& \xi(\tau)=a_{1}(\tau) \cos (\omega \tau)+b_{1}(\tau) \sin (\omega \tau), \quad \alpha(\tau)=a_{2}(\tau) \cos (\omega \tau)+b_{2}(\tau) \sin (\omega \tau) \\
& w_{i}(\tau)=a_{i+2}(\tau) \cos (\omega \tau)+b_{i+2} \sin (\omega \tau), \quad i=1,2,3,4 \tag{15}
\end{align*}
$$

where $a_{i}(\tau)$ and $b_{i}(\tau), i=1,2, \ldots, 6$ are slowly varying functions of τ, and ω is the angular frequency of the LCO. Let r and R denote the amplitude of ξ and α, respectively, where $r=\sqrt{a_{1}^{2}+b_{1}^{2}}$ and $R=\sqrt{a_{2}^{2}+b_{2}^{2}}$.

Substituting equation (15) into equation (2), and matching the coefficients of $\cos (\omega \tau)$ and $\sin (\omega \tau)$, leads to a system of 12 first order non-linear differential equations in a_{i} and b_{i} $i=1,2, \ldots, 6$. After considerable algebraic manipulations, the following amplitude equations are obtained:

$$
\begin{align*}
A & =\frac{\left(n_{1}^{2}+s_{1}^{2}\right)}{m_{1}^{2}+\left(p_{1}+q_{1} r^{2}\right)^{2}}, \quad r^{2}=A R^{2} \\
R^{2} & =\frac{1}{q_{2}}\left(-s_{2} \pm \sqrt{\left(p_{2}^{2}+m_{2}^{2}\right) A-n_{2}^{2}}\right) \tag{16}
\end{align*}
$$

where m_{1}, n_{1}, \ldots are functions of the system parameters and the frequency ω. The expressions of m_{1}, n_{1}, \ldots in terms of system parameters and the frequency ω are given in Appendix D. The detailed derivation can be found in Lee et al. [7]. Now, using the amplitude-frequency relationships given in equation (16) and the frequency relation (14) derived in the previous section, the solutions of LCOs can be predicted analytically.

5. CASE STUDIES AND DISCUSSION

In order to demonstrate the accuracy of the analytical formulae given in equations (14) and (16) in predicting the frequency and amplitude of LCOs, we consider the following examples in which the aeroelastic system given in equation (1) contains cubic restoring forces. In all cases, analytical prediction are compared with solutions obtained numerically using a fourth order Runge-Kutta time-integration scheme applied to system (3).

The parameters $\mu=100, a_{h}=-\frac{1}{2}, x_{a}=\frac{1}{4}, \zeta_{\xi}=\zeta_{\alpha}=0, r_{\alpha}=0.5$ are used in all case studies. These system parameters are chosen from Reference [5]. The procedure discussed in the previous section does not depend on the choice of the parameters. The non-linear restoring forces $M(\alpha)$ and $G(\xi)$ are defined in formulae (4). Now, by varying the value of $\bar{\omega}$ and the coefficients $\beta_{\alpha}, \beta_{\alpha^{3}}, \beta_{\xi}, \beta_{\xi^{3}}$, we consider the following four cases shown in Table 1.

For Cases 1 and 4, structural non-linearity is applied only in the pitch degree of freedom. In Cases 2 and 3, cubic restoring forces are applied in both pitch and plunge degrees of

Table 1
Cases studies

Case	β_{α}	$\beta_{\alpha^{3}}$	β_{ξ}	$\beta_{\xi^{3}}$
1	1	3	1	0
2	1	4	1	1
3	1	40	1	$0 \cdot 1$
4	$0 \cdot 1$	40	1	0

freedom.
In Case 1 , for $\bar{\omega}=0 \cdot 2$, the approximate centre manifold is given by

$$
\begin{aligned}
& \phi_{3}=-2.278662600 y_{1} \delta-2.932984813 y_{2} \delta, \\
& \phi_{4}=5.389063673 y_{1} \delta-3.395569702 y_{2} \delta, \\
& \phi_{5}=-2.576198739 y_{1} \delta+0.5470484684 y_{2} \delta, \\
& \phi_{6}=-0.037592929 y_{1} \delta+0.05243761634 y_{2} \delta, \\
& \phi_{7}=0.01137223245 y_{1} \delta-0.01813461435 y_{2} \delta, \\
& \phi_{8}=-7.328109745 y_{1} \delta+0.4092693894 y_{2} \delta .
\end{aligned}
$$

Substituting $y_{3}=\phi_{3}, y_{4}=\phi_{4}, y_{5}=\phi_{5}, y_{6}=\phi_{6}, y_{7}=\phi_{7}, y_{8}=\phi_{8}$ into the first equation of system (7), a governing system of equations for y_{1} and y_{2} is obtained. Note that by replacing y_{i} using the above expressions given in ϕ_{i}, for $i=3,4,5,6,7,8$, the solution for system (7) can be approximated by explicit functions in terms of y_{1}, y_{2} and δ. However, y_{1}, y_{2} are no longer exactly identical to those defined in the original system (6), hence we denote y_{1} and y_{2} by u_{1} and u_{2}. Therefore,

$$
\begin{aligned}
u_{1}^{\prime}= & -0.08404421373 u_{2}-0.005002186045 \delta u_{1}+0.02298015261 \delta u_{2} \\
& +0 \cdot 000001060912229 u_{1}^{3}-0.00001078496711 u_{1}^{2} u_{2}+0.07708383842 \delta^{2} u_{1} \\
& +0 \cdot 00003654575512 u_{1} u_{2}^{2}-0.00004127944026 u_{2}^{3}-0.06508466062 \delta^{2} u_{2}, \\
u_{2}^{\prime}= & 0.08404421392 u_{1}-0 \cdot 1034553702 \delta u_{1}+0.3210345363 \delta u_{2} \\
& +0 \cdot 00002847473453 u_{1}^{3}-0.0002894669955 u_{1}^{2} u_{2}+0.3223789845 \delta^{2} u_{1} \\
& +0 \cdot 0009808829109 u_{1} u_{2}^{2}-0 \cdot 001107934352 u_{2}^{3}-1 \cdot 281473950 \delta^{2} u_{2} .
\end{aligned}
$$

Transforming this reduced system into a standard form and rewriting the standard form in complex form, we obtain the normal form after introducing the near identity transformation. Applying a Taylor expansion to the coefficients of the normal form

Table 2
The frequency relationship with the bifurcation parameter $\gamma=U^{*} / U_{L}^{*}$

$\bar{\omega}$	$\omega=\omega(\delta)$	$\omega=\omega(\gamma)$	U_{L}^{*}
0.2	$0.0840-0.0101 * \delta$	$0.0739+0.0101 / \gamma^{2}$	6.28509
0.4	$0.1192-0.0333 * \delta$	$0.0859+0.0333 / \gamma^{2}$	5.23376
0.6	$0.1730-0.0616 * \delta$	$0.1114+0.0616 / \gamma^{2}$	4.40100
0.8	$0.2264-0.082 * \delta$	$0.1421+0.0823 / \gamma^{2}$	4.11454
1.0	$0.2522-0.0702 * \delta$	$0.1820+0.0702 / \gamma^{2}$	4.33559

expressions in polar co-ordinates, the coefficients in equation (13) are given by

$$
\begin{gathered}
\omega(0)=\omega_{0}=0 \cdot 08404421382, \quad \dot{\omega}(0)=-0 \cdot 06321776140, \\
\dot{\alpha}(0)=0 \cdot 1580161751, \quad a(0)=-0 \cdot 0002233463476, \quad b(0)=0 \cdot 00007505815011 .
\end{gathered}
$$

By analyzing system (13) with these results, we can verify that when $\delta<0$, the equilibrium point is asymptotically stable, which means that for $U^{*}<U_{L}^{*}$ all motions will decay to zero amplitude. For $\delta>0$, the equilibrium point becomes unstable. However, there is a stable periodic orbit with a frequency $\omega=0.0840-0.0101 \delta$ when $\bar{\omega}=0.2$.

For different values of $\bar{\omega}$, and using the same procedure, we derived the corresponding frequency relation which depends on the bifurcation parameter δ (or the ratio $\gamma=U^{*} / U_{L}^{*}$) as shown in Table 2.

Numerical simulations using Runge-Kutta scheme were carried out to compare with the analytical predictions. In Figures 2(a)-2(c), we display the frequency and the amplitudes for pitch and plunge motions that are predicted using the analytical formulae (14) and (16) with $\bar{\omega}=0 \cdot 2$. Figures 2(a)-2(c) show that excellent agreement in both frequencies and amplitudes of the limit cycle oscillations is obtained.

In Case 2, we consider an aeroelastic system with cubic structural non-linearities in both pitch and plunge degrees of freedom.

For different $\bar{\omega}$, with the corresponding bifurcation value U_{L}^{*}, the frequency relations with the bifurcation parameter $\delta=1-\left(U_{L}^{*} / U^{*}\right)^{2}$ are shown in Table 3.

Furthermore, in Figures 3(a) and 3(b), we display the frequencies and the amplitudes for pitch motions that are predicted using the analytical formulae (14) and (16) when $\bar{\omega}=0 \cdot 2$. These results are compared with numerical simulations, and it is shown that excellent agreement in both frequency and amplitude is obtained. We see some variations of the frequencies and the amplitudes when the ratio U^{*} / U_{L}^{*} increases from the bifurcation point $\left(U^{*} / U_{L}^{*}=1\right)$. This is expected due to limitations of the centre manifold theory.

In Case 3, we investigate the aeroelastic system with a stronger non-linear term in $M(\alpha)$ such that $\beta_{\alpha^{3}} / \beta_{\alpha}=40$. At $\bar{\omega}=0 \cdot 2$, the frequency equation is given by $\omega=0.0840$ $-0.0101\left(1-\left(U_{L}^{*} / U^{*}\right)^{2}\right)$. The variation of frequency ω with U^{*} / U_{L}^{*} is plotted in Figure 4(a). Notice that the results of Figure 4(a) are almost identical to those displayed in Figure 2(a) for Case 1. Recall that the linear coefficients β_{α} equal to one for both Cases 3 and 1, but the non-linear coefficients $\beta_{\alpha^{3}}$ equal to 40 and 3 for Case 3 and 1, respectively. Although it may seem rather surprising to observe that the frequency relation is not sensitive to the non-linear coefficient, a satisfactory explanation will be provided shortly. The corresponding amplitudes of pitch and plunge motions when $\bar{\omega}=0 \cdot 2$, as shown in Figures

Figure 2. Dynamical response for Case 1. (a) Frequency; (b) amplitude of pitch motion; (c) amplitude of plunge motion: -, analytical prediction; $\circ \circ \circ$, numerical result.

Table 3
The frequency relationship with the bifurcation parameter $\gamma=U^{*} / U_{L}^{*}$

$\bar{\omega}$	$\omega=\omega(\delta)$	$\omega=\omega(\gamma)$	U_{L}^{*}
$0 \cdot 2$	$0 \cdot 0840+0.0082 * \delta$	$0 \cdot 0922-0.0082 / \gamma^{2}$	$6 \cdot 28509$
$0 \cdot 4$	$0 \cdot 1192-0.0158 * \delta$	$0 \cdot 1034+0 \cdot 0158 / \gamma^{2}$	$5 \cdot 23376$
$0 \cdot 6$	$0 \cdot 1730-0.0554 * \delta$	$0 \cdot 1176+0.0554 / \gamma^{2}$	$4 \cdot 40100$
$0 \cdot 8$	$0.2244-0.0812 * \delta$	$0 \cdot 1432+0.0812 / \gamma^{2}$	$4 \cdot 11454$
$1 \cdot 0$	$0.2522-0.0683 * \delta$	$0 \cdot 1839+0.0683 / \gamma^{2}$	4.33559

4(b) and 4(c), however, are not the same as those reported in Case 1 (see Figures 2(b) and 2(c)).

In Case 4, we consider a very strong non-linear case in the pitch degree of freedom where $\beta_{\alpha^{3}} / \beta_{\alpha}=400$. Our proposed procedure is applied. The frequency equation at $\bar{\omega}=0 \cdot 2$ is given by $\omega=0.1822-0.0659\left(1-U_{L}^{*} / U^{*}\right)^{2}$). Comparisons with numerical simulations are shown in Figures 5(a) and 5(b).

From the results reported here, it is evident that our analytical analysis gives an accurate prediction of the frequency and amplitudes of pitch and plunge motions of LCOs.

Figure 3. Dynamical response for Case 2. (a) Frequency; (b) amplitude of pitch motion: -, analytical prediction; $\circ \circ$, numerical result.

Moreover, while numerical simulations show that the frequency variation with U^{*} / U_{L}^{*} is almost the same for Cases 1 and 3, an explanation is provided by using the analytical analysis. Since both linear coefficients β_{α} and β_{ξ} are identical for Case 1 and 3, the linear flutter speed, $U_{L}^{*}=6.28509$, is identical at $\bar{\omega}=0.2$ for both cases. Now, by applying the centre manifold theory and normal form method to system (3), we obtain coefficients of formula (14) in terms of $\beta_{\alpha^{3}}$ and $\beta_{\xi^{3}}$:

$$
\begin{aligned}
& \omega_{0}=0 \cdot 08404421382, \quad \omega(0)=-0 \cdot 06321776140, \quad \alpha(0)=0 \cdot 1580161751, \\
& a(0)=-0 \cdot 00007444878252 \beta_{\alpha^{3}}+0 \cdot 00006278101583 \beta_{\xi^{3}}, \\
& b(0)=0 \cdot 00002501938337 \beta_{\alpha^{3}}+0 \cdot 000006148895571 \beta_{\xi^{3}} .
\end{aligned}
$$

Notice that the non-linear coefficients $\beta_{\alpha^{3}}$ and $\beta_{\xi^{3}}$ only affect the coefficients $a(0)$ and $b(0)$. The frequency relation in terms of $\beta_{\alpha^{3}}$ and $\beta_{\xi^{3}}$ is given by

$$
\begin{align*}
\omega= & 0.08404421382+(-0 \cdot 063217761450 \\
& \left.-0 \cdot 1580161751 \frac{0 \cdot 00002501938337 \beta_{\alpha^{3}}+0 \cdot 00006148895571 \beta_{\xi^{3}}}{-0 \cdot 00007444878252 \beta_{\alpha^{3}}+0 \cdot 00006278101583 \beta_{\xi^{3}}}\right) \delta . \tag{17}
\end{align*}
$$

Figure 4. Dynamical response for Case 3. (a) Frequency; (b) amplitude of pitch motion; (c) amplitude of plunge motion: -, analytical prediction; $\circ \circ \circ$, numerical result.

From the above formula, it is clear that when either $\beta_{\alpha^{3}}$ or $\beta_{\xi^{3}}$ is zero, the other non-linear coefficient $\beta_{\xi^{3}}$ or $\beta_{\alpha^{3}}$ will not affect the resulting frequency. Hence, the frequency ω depends only on δ and is independent of $\beta_{\xi^{3}}$ or $\beta_{\alpha^{3}}$. In Case $1, \beta_{\xi^{3}}=0$, and the frequency relation is independent of the value of $\beta_{\alpha^{3}}$. When both coefficients are present but with $\beta_{\alpha^{3}} \gg \beta_{\xi^{3}}$ as in Case 3 , it is easy to verify that the effect due to non-linear coefficient $\beta_{\xi^{3}}$ can be neglected. Therefore, Case 3 can be considered to be similar to Case 1.

Unlike the frequency relation, the amplitude equations given in equation (16) indicate that the amplitude of LCOs is more sensitive with the variation in the non-linear coefficients $\beta_{\alpha^{3}}$ and $\beta_{\xi^{3}}$. This observation is indeed confirmed by the results reported in Figures 2 and 4.

6. CONCLUDING REMARKS

In this paper, we derived a frequency relation for the self-excited two-degree-of-freedom aeroelastic system with structural non-linearities represented by cubic springs. Together with the amplitude equations derived in our previous study, the limit cycle oscillations for the self-excited system can be predicted analytically. Our study shows that the frequency and amplitude of LCOs do not depend on the choice of initial conditions. Moreover, it has been shown that when the structural non-linearity is applied only in one-degree-of-freedom, or when non-linearities appear in both pitch and plunge degrees of freedom but with one of the non-linear coefficient much greater than the other non-linear term, then the frequency relation is not affected by the non-linear coefficients $\beta_{\alpha^{3}}$ or $\beta_{\xi^{3}}$. However, the corresponding

Figure 5. Dynamical response for Case 4. (a) Frequency; (b) amplitude of pitch motion: -, analytical prediction; $\circ \circ$, numerical result.
amplitude of the LCO is sensitive with the variation in $\beta_{\alpha^{3}}$ and $\beta_{\xi^{3}}$. The mathematical approach presented here not only provides an accurate agreement with numerical results obtained by using a fourth order Runge-Kutta time-integration scheme, but it also leads to a better understanding of non-linear aeroelasticity especially near the bifurcation points. In the present work, we focus on the study of LCO through a Hopf-bifurcation. The period of doubling phenomenon in which an LCO subsequently gives rise to a two-period orbit by means of a flip-bifurcation has been detected in aeroelastic system with cubic structural non-linearities [1]. The phenomenon is interesting and important, since it may provide a route leading to the investigation of the period-two and chaotic motions. However, since the bifurcation analysis will now depend upon periodically varying parameters instead of fixed points in a Hopf-bifurcation, a general procedure based on time-dependent centre manifold theory and time-dependent normal form will be required.

ACKNOWLEDGMENT

The authors would like to acknowledge the support received from the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. B. H. K. Lee, S. J. Price and Y. S. Wong Progress in Aerospace Sciences 35, 205-334. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos.
2. D. S. Woolston, H. L. Runyan and R. E. Andrews 1957 Journal of Aeronautical Sciences. 24, 57-63. An investigation of certain types of structural nonlinearities on wing and control surface flutter.
3. B. H. K. Lee and P. LeBlanc 1986 National Research Council of Canada, Aeronautical Note NAE-AN-36, NRC No. 25438. Flutter analysis of a two-dimensional airfoil with cubic nonlinear restoring force.
4. T. O’Neil, H. Gilliat and T. Strganac 1996 AI AA Paper, 96-1390. Investigation of aeroelastic response for a system with continuous structural nonlinearities.
5. S. J. Price, H. Alighanbari and B. H. K. Lee 1995 Journal of Fluids and Structures 9, 175-193. The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities.
6. L. Gong, Y. S. Wong and B. H. K. Lee 1998 Dynamics of Continuous, Discrete and Impulsive Systems 4, 99-119. Dynamics of a coupled system of Duffing's equations.
7. B. H. K. Lee, L. Y. Jiang and Y. S. Wong 1999 Journal of Fluids Structures 13, 75-101. Flutter of an airfoil with a cubic non-linear restoring force.
8. J. Carr 1981 Application of Centre Manifold Theory, New York: Springer-Verlag.
9. S. Wiggins 1996 Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York: Springer-Verlag.
10. B. H. K. Lee, L. Gong and Y. S. Wong 1997 Journals of Fluids Structures 11, 225-246. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity.
11. Y. C. Fung 1993 An Introduction to the Theory of Aeroelasticity. New York: Dover Publications Inc.
12. D. J. Jones and B. H. K. Lee 1985 National Research Council of Canada, Aeronautical Note, NAE-AN-25, NRC No. 24131. Time marching numerical solution of the dynamic response of nonlinear systems.
13. L. Liu, Y. S. Wong and B. H. K. Lee. Application of the point transformation method in nonlinear aeroelasticity (submitted for publication in Journal of Sound and Vibration).
14. A. Heck 1993 Introduction to Maple. New Yoprk: Springer-Verlag.
15. J. Guckenheimer and P. Holmes 1993 Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Berlin: Springer-Verlag.
16. N. Krylov and N. Bogoliubov 1947 Introduction to Nonlinear Mechanics (translation by Solomon Lifschitz). Princeton: Princeton University Press.
17. B. H. K. Lee and J. Desrochers 1987 National Research Council of Canada, Aeronautical Report $L R-618, N R C$ No. 27833. Flutter analysis of a two-dimensional airfoil containing structural nonlinearities.

APPENDIX A: COEFFICIENTS IN EQUATIONS (2)

$$
\begin{aligned}
& c_{0}=1+\frac{1}{\mu}, \quad c_{1}=x_{\alpha}-\frac{a_{h}}{\mu}, \quad c_{2}=\frac{2}{\mu}\left(1-\psi_{1}-\psi_{2}\right), \\
& c_{2}=\frac{2}{\mu}\left(1+\left(1-2 a_{h}\right)\left(1-\psi_{1}-\psi_{2}\right)\right), \quad c_{4}=\frac{2}{\mu}\left(\epsilon_{1} \psi_{1}+\epsilon_{2} \psi_{2}\right), \\
& c_{5}=\frac{2}{\mu}\left(1-\psi_{1}-\psi_{2}+\left(\frac{1}{2}-a_{h}\right)\left(\epsilon_{1} \psi_{1}+\epsilon_{2} \psi_{2}\right)\right) \\
& c_{6}=\frac{2}{\mu} \epsilon_{1} \psi_{1}\left(1-\epsilon_{1}\left(\frac{1}{2}-a_{h}\right)\right), \quad c_{7}=\frac{2}{\mu} \epsilon_{2} \psi_{2}\left(1-\epsilon_{2}\left(\frac{1}{2}-a_{h}\right)\right), \\
& c_{8}=-\frac{2}{\mu} \epsilon_{1}^{2} \psi_{1}, \quad c_{9}=-\frac{2}{\mu} \epsilon_{2}^{2} \psi_{2}, \quad d_{0}=\frac{x_{\alpha}}{r_{\alpha}^{2}}-\frac{a_{h}}{\mu r_{\alpha}^{2}}, \quad d_{1}=1+\frac{1+8 a_{h}^{2}}{8 \mu r_{\alpha}^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& d_{2}=-\frac{1+2 a_{h}}{\mu r_{\alpha}^{2}}\left(1-\psi_{1}-\psi_{2}\right), \\
& d_{3}=\frac{1-2 a_{h}}{2 \mu r_{\alpha}^{2}}-\frac{\left(1+2 a_{h}\right)\left(1-2 a_{h}\right)\left(1-\psi_{1}-\psi_{2}\right)}{2 \mu r_{\alpha}^{2}}, \\
& d_{4}=-\frac{1+2 a_{h}}{\mu r_{\alpha}^{2}}\left(\epsilon_{1} \psi_{1}+\epsilon_{2} \psi_{2}\right), \\
& d_{5}=-\frac{1+2 a_{h}}{\mu r_{\alpha}^{2}}\left(1-\psi_{1}-\psi_{2}\right)-\frac{\left(1+2 a_{h}\right)\left(1-2 a_{h}\right)\left(\psi_{1} \epsilon_{1}-\psi_{2} \epsilon_{2}\right)}{2 \mu r_{\alpha}^{2}}, \\
& d_{6}=-\frac{\left(1+2 a_{h}\right) \psi_{1} \epsilon_{1}}{\mu r_{\alpha}^{2}}\left(1-\epsilon_{1}\left(\frac{1}{2}-a_{h}\right)\right), \\
& d_{7}=-\frac{\left(1+2 a_{h}\right) \psi_{2} \epsilon_{2}}{\mu r_{\alpha}^{2}}\left(1-\epsilon_{2}\left(\frac{1}{2}-a_{h}\right)\right), \\
& d_{8}=\frac{\left(1+2 a_{h}\right) \psi_{1} \epsilon_{1}^{2}}{\mu r_{\alpha}^{2}}, \quad d_{9}=\frac{\left(1+2 a_{h}\right) \psi_{2} \epsilon_{2}^{2}}{\mu r_{\alpha}^{2}},
\end{aligned}
$$

APPENDIX B: COEFFICIENTS IN EQUATIONS (3)

$$
j=\frac{1}{c_{0} d_{1}-c_{1} d_{0}}
$$

$$
a_{21}=j\left(-d_{5} c_{0}+c_{5} d_{0}\right), \quad a_{22}=j\left(-d_{3} c_{0}+c_{3} d_{0}\right), \quad a_{23}=j\left(-d_{4} c_{0}+c_{4} d_{0}\right)
$$

$$
a_{24}=j\left(-d_{2} c_{0}+c_{2} d_{0}\right), \quad a_{25}=j\left(-d_{6} c_{0}+c_{6} d_{0}\right), \quad a_{26}=j\left(-d_{7} c_{0}+c_{7} d_{0}\right),
$$

$$
a_{27}=j\left(-d_{8} c_{0}+c_{8} d_{0}\right), \quad a_{28}=j\left(-d_{9} c_{0}+c_{9} d_{0}\right),
$$

$$
a_{41}=j\left(d_{5} c_{1}-c_{5} d_{1}\right), \quad a_{42}=j\left(d_{3} c_{1}-c_{3} d_{1}\right), \quad a_{43}=j\left(d_{4} c_{1}-c_{4} d_{1}\right)
$$

$$
a_{44}=j\left(d_{2} c_{1}-c_{2} d_{1}\right), \quad a_{45}=j\left(d_{6} c_{1}-c_{6} d_{1}\right), \quad a_{46}=j\left(d_{7} c_{1}-c_{7} d_{1}\right)
$$

$$
a_{47}=j\left(d_{8} c_{1}-c_{8} d_{1}\right), \quad a_{48}=j\left(d_{9} c_{1}-c_{9} d_{1}\right) .
$$

APPENDIX C: EXPRESSIONS FOR THE MATRICES A, B, AND F IN EQUATIONS (5)

$$
\begin{aligned}
& b_{21}=j c_{0}\left(\frac{1}{U_{L}^{*}}\right)^{2} \beta_{\alpha}, \quad b_{22}=j c_{0}\left(\frac{1}{U_{L}^{*}}\right) 2 \zeta_{\alpha}, \quad b_{23}=j d_{0}\left(\frac{\bar{\omega}}{U_{L}^{*}}\right)^{2} \beta_{\xi}, \quad b_{24}=j d_{0}\left(\frac{\bar{\omega}}{U_{L}^{*}}\right) 2 \zeta_{\xi}, \\
& b_{41}=j c_{1}\left(\frac{1}{U_{L}^{*}}\right)^{2} \beta_{\alpha}, \quad b_{42}=j c_{1}\left(\frac{1}{U_{L}^{*}}\right) 2 \zeta_{\alpha}, \quad b_{43}=j d_{1}\left(\frac{\bar{\omega}}{U_{L}^{*}}\right)^{2} \beta_{\xi}, \quad b_{44}=j d_{1}\left(\frac{\bar{\omega}}{U_{L}^{*}}\right) 2 \zeta_{\xi},
\end{aligned}
$$

$$
\left.A=\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21}-b_{21} & a_{22}-b_{22} & a_{23}+b_{23} & a_{24}+b_{24} & a_{25} & a_{26} & a_{27} & a_{28} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
a_{41}+b_{41} & a_{42}+b_{42} & a_{43}-b_{43} & a_{44}-b_{44} & a_{45} & a_{46} & a_{47} & a_{48} \\
0 & 0 & 0 & 0 & -\epsilon_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\epsilon_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\epsilon_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\epsilon_{2}
\end{array} \right\rvert\,
$$

APPENDIX D: COEFFICIENTS OF EQUATION (16)

$$
m_{1}=\left(c_{2}+2 \zeta_{\xi} \frac{\bar{\omega}}{U^{*}}\right) \omega-\frac{c_{8} \omega}{\epsilon_{1}^{2}+\omega^{2}}-\frac{c_{9} \omega}{\epsilon_{2}^{2}+\omega^{2}}, \quad n_{1}=c_{3} \omega-\frac{c_{6} \omega}{\epsilon_{1}^{2}+\omega^{2}},-\frac{c_{7} \omega}{\epsilon_{2}^{2}+\omega^{2}},
$$

$$
p_{1}=\frac{c_{8} \epsilon_{1}}{\epsilon_{1}^{2}+\omega^{2}}+\frac{c_{9} \epsilon_{2}}{\epsilon_{2}^{2}+\omega^{2}}+c_{4}+\beta_{\xi}\left(\frac{\bar{\phi}}{U^{*}}\right)^{2}-c_{0} \omega^{2}, \quad q_{1}=\frac{3}{4} \beta_{\xi^{3}}\left(\frac{\bar{\omega}}{U^{*}}\right)^{2}
$$

$$
\begin{gathered}
s_{1}=c_{5}-c_{1} \omega^{2}+\frac{c_{6} \epsilon_{1}}{\epsilon_{1}^{2}+\omega^{2}}+\frac{c_{7} \epsilon_{2}}{\epsilon_{2}^{2}+\omega^{2}}, \quad m_{2}=d_{2} \omega-\frac{d_{8} \omega}{\epsilon_{1}^{2}+\omega^{2}}-\frac{d_{9} \omega}{\epsilon_{2}^{2}+\omega^{2}} \\
n_{2}=\left(d_{3}+2 \zeta_{\alpha} \frac{1}{U^{*}}\right) \omega-\frac{d_{6} \omega}{\epsilon_{1}^{2}+\omega^{2}}-\frac{d_{7} \omega}{\epsilon_{2}^{2}+\omega^{2}}, \quad p_{2}=\frac{c_{8} \epsilon_{1}}{\epsilon_{1}^{2}+\omega^{2}}+\frac{d_{9} \epsilon_{2}}{\epsilon_{2}^{2}+\omega^{2}}+d_{4}-d_{0} \omega^{2}, \\
q_{2}=\frac{3}{4} \beta_{\alpha^{3}}\left(\frac{1}{U^{*}}\right)^{2}, \quad s_{2}=d_{5}+\beta_{\alpha}\left(\frac{1}{U^{*}}\right)^{2}-d_{1} \omega^{2}+\frac{d_{6} \epsilon_{1}}{\epsilon_{1}^{2}+\omega^{2}}+\frac{d_{7} \epsilon_{2}}{\epsilon_{2}^{2}+\omega^{2}} .
\end{gathered}
$$

APPENDIX E: NOMENCLATURE

a_{h}	non-dimensional distance from airfoil mid-chord to elastic axis
b	airfoil semi-chord
h	plunge displacement
m	airfoil mass
r	amplitude of ξ
r_{α}	radius of gyration about the elastic axis
t	time
x_{α}	non-dimensional distance from the elastic axis to the centre of mass
$C_{L}(\tau), C_{M}(\tau)$	aerodynamic lift and pitching moment coefficients
$G(\xi), M(\alpha)$	non-linear plunge and pitch stiffness terms
$P(\tau), Q(\tau)$	externally applied forces and moments
R	amplitude of α
U	free stream velocity
U^{*}	non-dimensional velocity, $U^{*}=U\left(b \omega_{\alpha}\right)$
U_{L}^{*}	linear flutter speed
X, Y	system variable vectors
V, Z	complex variables
ξ	non-dimensional plunge displacement, $\xi=h / b$
α	pitch angle of airfoil
ω	frequency of the motion
μ	airfoil/air mass ratio, $\mu=m\left(\pi \rho b^{2}\right)$
τ	non-dimensional time, $\tau=U t / b$
δ	perturbation parameter
ψ_{1}, ψ_{2}	constants in Wagner's function
$\epsilon_{1}, \epsilon_{2}$	constants in Wagner's function
$\beta_{\alpha}, \beta_{\alpha^{3}}$	constants in non-linear pitch stiffness term $M(\alpha)$
$\beta_{\xi}, \beta_{\xi^{3}}$	constants in non-linear plunge stiffness term $G(\xi)$
$\zeta_{\zeta}, \zeta_{\alpha}$	viscous damping ratios in plunge and in pitch
	frequency ratio, $\bar{\omega}=\omega_{\xi} / \omega_{\alpha}$
$\begin{aligned} & \omega_{\xi}, \omega_{\alpha} \\ & \phi(\tau) \end{aligned}$	natural frequencies in plunge and in pitch Wagner's function

