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In this study, a frequency relation for limit cycle oscillations of a two-degree-of-freedom
aeroelastic system with structural non-linearities represented by cubic restoring spring
forces is derived. The centre manifold theory is applied to reduce the original system of
nine-dimensional "rst order ordinary di!erential equations to a governing system in two
dimensions near the bifurcation point. The principle of normal form is used to simplify the
non-linear terms of the lower dimensional system. Using the frequency relation and the
amplitude}frequency relationships derived from a previous study, limit cycle oscillations
(LCOs) for self-excited systems can be predicted analytically. The mathematical technique
proposed here has been applied to investigate LCO near a Hopf-bifurcation for an
aeroelastic system with cubic restoring forces. Not only that an excellent agreement is
obtained compared to the numerical results from solving the original system of eight
non-linear di!erential equations by Runge}Kutta time integration scheme, but we also
demonstrate that the use of a mathematical approach leads to a better understanding of
non-linear aeroelasticity.

( 2000 Academic Press
1. INTRODUCTION

In dynamic response investigations of aircraft structures, classical theories assume linear
aerodynamics and linear structures, so that the aeroelastic equations can be reduced to a set
of linear equations that can be readily solved. However, in reality non-linearities are present
in one form or the other. In many instances, linear aerodynamics give insu$ciently accurate
results. For example, when the airspeed approaches transonic Mach numbers, linear theory
fails to detect the transonic dip and other phenomena associated with the presence of shock
waves. Aircraft structures can have non-linearities that a!ect not only the #utter speed, but
also the characteristics of the dynamical response. Hence, to obtain a better understanding
of the physical and mathematical aspect of non-linear aeroelasticity, recent research [1, 17]
has been directed towards the study of these two types of non-linearities.

Structural non-linearities that occur in the restoring forces can be treated as non-linear
springs, such as springs with free-play, hysteresis or cubic non-linearities. These types of
non-linearities have been investigated by Woolston et al. [2] for a two-dimensional airfoil
performing pitching and plunging motions using an analog computer. There are serious
drawbacks in the use of an analog computer to study non-linear #utter, and the accuracy is
0022-460X/00/290641#19 $35.00/0 ( 2000 Academic Press
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often not as high as one would desire in order to investigate the characteristics of the airfoil
motion fully. Lee and LeBlanc [3] analyzed numerically a two-degree-of-freedom (d.o.f.)
airfoil motion with a cubic non-linearity in the pitch degree of freedom. O'Neil et al. [4]
performed experiments on the existence of limit cycle oscillation (LCO) of an airfoil with
cubic structural non-linearities and compared their results with numerical simulations such
as those given by Lee and LeBlanc. Price et al. [5] studied cubic non-linearity using
numerical and describing function techniques. Describing function techniques [16] cannot
be used to investigate the e!ects of initial conditions but can be used to provide good
predictions of magnitudes of LCO responses. Gong et al. [6] investigated analytically and
numerically the dynamic response of a coupled two-d.o.f. system with cubic non-linearities.
They showed that harmonic, quasiperiodic and chaotic motions can exist for system
parameters that correspond to those commonly used to analyze aeroelastic behavior of
aircraft structures.

In this study, we concentrate on the LCOs of a two-d.o.f. aeroelastic system with
structural non-linearity represented by cubic restoring spring forces. When the system is
subject to an external forcing term with driving frequency u, Lee et al. [7] derive analytical
formulae that provide amplitude}frequency relationships for the pitch and plunge motion
respectively. However, for a self-excited system (i.e., in the absence of external forcing term),
the reference frequency u is not known, and the motion cannot be determined from the
amplitude}frequency relationships they derived. Several procedures were discussed in
Reference [7] to estimate the frequency value u for the self-excited system, but the results
were not satisfactory except when the velocity;* is very close to the linear #utter speed;*

L
.

To overcome this limitation in Lee et al. [7], we apply the centre manifold theory of Carr
[8] and the principle of normal form [9, 15] to derive a frequency relation for self-excited
motion of a two-d.o.f. non-linear system. Using the frequency relation together with the
amplitude}frequency relationships, LCOs for the self-excited system can be predicted
analytically. Numerical simulations are carried out to compare the results with those
obtained from the analytical analysis.

2. MODEL FORMULATION

In Figure 1, we show schematically the notations used in the analysis of a two-d.o.f. airfoil
oscillating in pitch and in plunge. The plunging de#ection is denoted by h, positive in the
downward direction, and a is the pitch angle about the elastic axis, positive with nose up.
The elastic axis is located at a distance a

h
b from the midchord, while the mass centre is

located at a distance xab from the elastic axis. Both distances are positive when measured
towards the trailing edge of the airfoil. The aeroelastic equations of motion including the
structure non-linearities with subsonic aerodynamics are given as [10]

mA#x
a
aA#2fm

uN
;*

m@#A
uN
;*B

2
G (m)"!

1

nk
C

L
(q)#

P (q)b
m;2

,

x
a

r2a
mA#aA#2fa

1

;*
a@#A

1

;*B
2
M(a)"

2

nkr2a
C

M
(q)#

Q(q)
m;2r2a

, (1)

where m"h/b is the non-dimensional displacement of the elastic axis and the @ denotes
di!erentiation with respect to the non-dimensional time q de"ned as q";t/b. ;* is
a non-dimensional velocity de"ned as ;*";/(bua) , and uN is given by uN "um/ua , where
um and ua are the natural frequencies of the uncoupled plunging and pitching modes



Figure 1. Two-degree-of-freedom airfoil motion.

CENTRE MANIFOLD THEORY 643
respectively. fm and fa are the damping ratios, and ra is the radius of gyration about the
elastic axis. G(m) and M(a) are the non-linear plunge and pitch sti!ness terms respectively.
C

L
(q) and C

M
(q) are the lift and pitching moment coe$cients respectively. For

incompressible #ow, Fung [11] gives the following expressions for C
L
(q) and C

M
(q):
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where the Wagner's function /(q) is given by

/ (q)"1!t
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e~e1q!t

2
e~e2q

and the constants t
1
"0)165, t

2
"0)335, e

1
"0)0455, and e

2
"0)3 are obtained from

Jones [12]. P (q) and Q(q) are the externally applied forces and moments respectively.
Due to the existence of the integral terms in the integro-di!erential equations (1), it is

di$cult to study the dynamic behavior of the system analytically. To eliminate the integral
terms, Lee et al. [10] introduced four new variables:
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Then, the system (1) can be rewritten in a general form containing only di!erential operators
as
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are given in Appendix A. f (q) and g (q) are

functions depending on initial conditions, Wagner's function and the forcing terms, namely,
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By introducing a variable vector X"(x
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, the coupled equations (2) can be written as a set of

eight "rst order ordinary di!erential equations:

X@"f (X, q).

This approach allows existing methods suitable for the study of ordinary di!erential
equations to be used in the analysis. In this paper, we assume that there is no external
forcing, i.e., Q(q)"P(q)"0 in equation (1). For large values of q when transients are
damped out and steady solutions are obtained, f (q)"0 and g(q)"0. Thus, the system can
be expressed as X@"f (X). In terms of vector components, equations (2) can be expressed as
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The expressions for j, a
21

,2, a
28

, a
41

,2, a
48

are given in Appendix B.
In this paper, the structural non-linearities are represented by cubic functions M(a) and

G(m), such that

M(a)"baa#ba3a3, G (m)"bmm#bm3m3, (4)

where ba , ba3 , bm and bm3 are constants. The analysis and the results for M (a) or G(m)
represented by bilinear and hysteresis functions will be reported in a separate paper [13].

3. CENTRE MANIFOLD AND NORMAL FORM

Following the analysis presented by Lee et al. [7], the bifurcation parameter is
associated with ;*, and the bifurcation value is ;*

L
, which is the value of the linear

#utter speed. To study the dynamic response of the system, we introduce a perturbation
parameter d such that 1/;*"(1!d)/;*

L
. Substituting this expression into equation (3), an

autonomous system with the perturbation parameter is obtained, i.e., X@"f (X; d). The
equilibrium points are then evaluated from f (X; d)"0. Without loss in generality, we
assume the origin to be the equilibrium point. The original system (3) can now be rewritten
as

X@"AX#B (d)X#(1!d )2F(X), d@"0. (5)

The matrix A is an 8]8 Jacobian matrix evaluated at the equilibrium point and at the
bifurcation value (i.e, d"0). The second and the third terms of equation (5) are non-linear
in X and d. The expressions for A, B(d) and F are given in Appendix C.

The matrix A has one pair of purely imaginary eigenvalues j
1
"iu

0
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1
"!iu

0
, one

pair of complex eigenvalues with negative real parts, j
2
"b#ic, j1

2
"b!ic, and four

negative real eigenvalues j
3
, j

4
, j

5
, j

6
. From the theory of centre manifold, it is possible to

reduce the dimensionality of the system. To obtain the centre manifold, we "rst transform
system (5) to a standard form. A transformation matrix P is obtained from the eigenspace of
A, such that P~1AP"J, where J is the Jordan canonical form of A containing all the
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eigenvalues of A:
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The dynamic response of system (6), which is nine dimensional, can be investigated through
an invariant two-dimensional system. De"ning
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where F
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are non-linear functions of>
A

and>
B
. Here, we start from the second order

terms since the "rst order terms have already been included in the "rst part associated with
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However, the solution for the above equation with the exact expression of the function H is
as di$cult to obtain as the solution for the original system. Following another important
result given by Carr [8], the centre manifold H can be approximated to any desired degree
of accuracy. The polynomial approximation of the centre manifold H is assumed, and is
denoted by U"(/
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36 algebraic equations with h
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as variables. These equations can be solved by
a standard computer problem such as Maple [14]. Extension to a higher order
approximation of center manifold is straightforward, but the algebra becomes considerably
more complex.

Once the expression of the center manifold is obtained, the original system is reduced to
a three-dimensional system on the center manifold. Since the solution of the reduced system
is not exactly identical to>

A
, we denote the corresponding solutions for y

1
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where g
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and g
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contain the non-linear terms as functions of u
1
, u

2
and d. An important

result in the application of the centre manifold theorem is that the asymptotic behavior of
the solutions near the equilibrium point and the bifurcation value of the original
eight-dimensional system can be studied by analyzing the reduced two-dimensional system
given in equation (10).

To simplify equation (10) for symbolic computations, we rewrite the system as
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NP~1"
Jb

12
#h2#(a!b

11
)2

b
12

h A
!a#b

11
b
12

h 0 B ,

where a"1
2
(b

11
#b

12
) and h"Jb

11
b
22

!b
12

b
21
!a2. By introducing a new variable

>"NP~1;"(y
1
, y

2
)T, system (11) can be transformed into the standard form

>@"J>#NP~1F(NP )> ) with J"A
a h

!h aB ,

i.e.,

y@
1
"ay

1
#hy

2
#F

1
(y

1
, y

2
, d), y@

2
"!hy

1
#ay

2
#F

2
(y

1
, y

2
, d), (12)

where F
1
, F

2
are non-linear terms of y
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The complex form of system (12) can be written as
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By the principle of normal form, the near identity transformation is introduced:
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Note that the prime denotes derivatives with respect to q and the dot denotes derivatives
with respect to d. The stability of the "xed point and the periodic orbit can now be analyzed.
Furthermore, the frequency of the limit cycle oscillations can be predicted from a frequency
relation given by
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The amplitude of the motion of the original system can also be predicted from the reduced
system on the center manifold. However, due to errors introduced in approximating the
centre manifold, the predicted amplitude value may not be su$ciently accurate.

4. AMPLITUDES OF LIMIT CYCLE OSCILLATIONS

To determine the amplitudes of LCOs associated with the pitch and plunge motions, we
assume
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Substituting equation (15) into equation (2), and matching the coe$cients of cos(uq) and
sin(uq), leads to a system of 12 "rst order non-linear di!erential equations in a

i
and b

i
i"1, 2,2, 6. After considerable algebraic manipulations, the following amplitude
equations are obtained:
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where m
1
, n

1
,2 are functions of the system parameters and the frequency u. The

expressions of m
1
, n

1
,2 in terms of system parameters and the frequency u are given in

Appendix D. The detailed derivation can be found in Lee et al. [7]. Now, using the
amplitude}frequency relationships given in equation (16) and the frequency relation (14)
derived in the previous section, the solutions of LCOs can be predicted analytically.

5. CASE STUDIES AND DISCUSSION

In order to demonstrate the accuracy of the analytical formulae given in equations (14)
and (16) in predicting the frequency and amplitude of LCOs, we consider the following
examples in which the aeroelastic system given in equation (1) contains cubic restoring
forces. In all cases, analytical prediction are compared with solutions obtained numerically
using a fourth order Runge}Kutta time-integration scheme applied to system (3).

The parameters k"100, a
h
"!1

2
, x

a
"1

4
, fm"fa"0, ra"0)5 are used in all case

studies. These system parameters are chosen from Reference [5]. The procedure discussed
in the previous section does not depend on the choice of the parameters. The non-linear
restoring forces M(a) and G(m) are de"ned in formulae (4). Now, by varying the value of
uN and the coe$cients ba , ba3 , bm , bm3 , we consider the following four cases shown in Table 1.

For Cases 1 and 4, structural non-linearity is applied only in the pitch degree of freedom.
In Cases 2 and 3, cubic restoring forces are applied in both pitch and plunge degrees of



TABLE 1

Cases studies

Case ba ba3 bm bm3

1 1 3 1 0
2 1 4 1 1
3 1 40 1 0)1
4 0)1 40 1 0
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freedom.
In Case 1, for uN "0)2, the approximate centre manifold is given by
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d#0)4092693894y

2
d.

Substituting y
3
"/

3
, y

4
"/

4
, y

5
"/

5
, y

6
"/

6
, y

7
"/

7
, y

8
"/

8
into the "rst equation

of system (7), a governing system of equations for y
1

and y
2

is obtained. Note that by
replacing y

i
using the above expressions given in /

i
, for i"3, 4, 5, 6, 7, 8, the solution for

system (7) can be approximated by explicit functions in terms of y
1
, y

2
and d. However, y

1
,

y
2
are no longer exactly identical to those de"ned in the original system (6), hence we denote

y
1

and y
2

by u
1

and u
2
. Therefore,

u@
1
"!0)08404421373u

2
!0)005002186045du

1
#0)02298015261du

2

#0)000001060912229u3
1
!0)00001078496711u2

1
u
2
#0)07708383842d2u

1

#0)00003654575512u
1
u2
2
!0)00004127944026u3

2
!0)06508466062d2u

2
,

u@
2
"0)08404421392u

1
!0)1034553702du

1
#0)3210345363du

2

#0)00002847473453u3
1
!0)0002894669955u2

1
u
2
#0)3223789845d2u

1

#0)0009808829109u
1
u2
2
!0)001107934352u3

2
!1)281473950d2u

2
.

Transforming this reduced system into a standard form and rewriting the standard form in
complex form, we obtain the normal form after introducing the near identity
transformation. Applying a Taylor expansion to the coe$cients of the normal form



TABLE 2

¹he frequency relationship with the bifurcation parameter c";*/;*
L

uN u"u(d) u"u(c) ;*
L

0)2 0)0840!0)0101 * d 0)0739#0)0101/c2 6)28509
0)4 0)1192!0)0333 * d 0)0859#0)0333/c2 5)23376
0)6 0)1730!0)0616 * d 0)1114#0)0616/c2 4)40100
0)8 0)2264!0)0823 * d 0)1421#0)0823/c2 4)11454
1)0 0)2522!0)0702 * d 0)1820#0)0702/c2 4)33559
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expressions in polar co-ordinates, the coe$cients in equation (13) are given by

u(0)"u
0
"0)08404421382, uR (0)"!0)06321776140,

aR (0)"0)1580161751, a (0)"!0)0002233463476, b (0)"0)00007505815011.

By analyzing system (13) with these results, we can verify that when d(0, the equilibrium
point is asymptotically stable, which means that for;*(;*

L
all motions will decay to zero

amplitude. For d'0, the equilibrium point becomes unstable. However, there is a stable
periodic orbit with a frequency u"0)0840!0)0101d when uN "0)2.

For di!erent values of uN , and using the same procedure, we derived the corresponding
frequency relation which depends on the bifurcation parameter d (or the ratio c";*/;*

L
)

as shown in Table 2.
Numerical simulations using Runge}Kutta scheme were carried out to compare with the

analytical predictions. In Figures 2(a)}2(c), we display the frequency and the amplitudes for
pitch and plunge motions that are predicted using the analytical formulae (14) and (16) with
uN "0)2. Figures 2(a)}2(c) show that excellent agreement in both frequencies and
amplitudes of the limit cycle oscillations is obtained.

In Case 2, we consider an aeroelastic system with cubic structural non-linearities in both
pitch and plunge degrees of freedom.

For di!erent uN , with the corresponding bifurcation value ;*
L
, the frequency relations

with the bifurcation parameter d"1!(;*
L
/;*)2 are shown in Table 3.

Furthermore, in Figures 3(a) and 3(b), we display the frequencies and the amplitudes for
pitch motions that are predicted using the analytical formulae (14) and (16) when uN "0)2.
These results are compared with numerical simulations, and it is shown that excellent
agreement in both frequency and amplitude is obtained. We see some variations of the
frequencies and the amplitudes when the ratio ;*/;*

L
increases from the bifurcation point

(;*/;*
L
"1). This is expected due to limitations of the centre manifold theory.

In Case 3, we investigate the aeroelastic system with a stronger non-linear term in M(a)
such that ba3/ba"40. At uN "0)2, the frequency equation is given by u"0)0840
!0)0101(1!(;*

L
/;*)2). The variation of frequency u with ;*/;*

L
is plotted in Figure

4(a). Notice that the results of Figure 4(a) are almost identical to those displayed in Figure
2(a) for Case 1. Recall that the linear coe$cients ba equal to one for both Cases 3 and 1, but
the non-linear coe$cients ba3 equal to 40 and 3 for Case 3 and 1, respectively. Although it
may seem rather surprising to observe that the frequency relation is not sensitive to the
non-linear coe$cient, a satisfactory explanation will be provided shortly. The
corresponding amplitudes of pitch and plunge motions when uN "0)2, as shown in Figures



Figure 2. Dynamical response for Case 1. (a) Frequency; (b) amplitude of pitch motion; (c) amplitude of plunge
motion: *, analytical prediction;

3 3 3
, numerical result.

TABLE 3

¹he frequency relationship with the bifurcation parameter c";*/;*
L

uN u"u(d) u"u(c) ;*
L

0)2 0)0840#0)0082 * d 0)0922!0)0082/c2 6)28509
0)4 0)1192!0)0158 * d 0)1034#0)0158/c2 5)23376
0)6 0)1730!0)0554 * d 0)1176#0)0554/c2 4)40100
0)8 0)2244!0)0812 * d 0)1432#0)0812/c2 4)11454
1)0 0)2522!0)0683 * d 0)1839#0)0683/c2 4)33559
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4(b) and 4(c), however, are not the same as those reported in Case 1 (see Figures 2(b) and
2(c)).

In Case 4, we consider a very strong non-linear case in the pitch degree of freedom where
ba3/ba"400. Our proposed procedure is applied. The frequency equation at uN "0)2 is
given by u"0)1822!0)0659(1!;*

L
/;*)2). Comparisons with numerical simulations are

shown in Figures 5(a) and 5(b).
From the results reported here, it is evident that our analytical analysis gives an accurate

prediction of the frequency and amplitudes of pitch and plunge motions of LCOs.



Figure 3. Dynamical response for Case 2. (a) Frequency; (b) amplitude of pitch motion:*, analytical prediction;
3 3 3

, numerical result.
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Moreover, while numerical simulations show that the frequency variation with ;*/;*
L

is
almost the same for Cases 1 and 3, an explanation is provided by using the analytical
analysis. Since both linear coe$cients ba and bm are identical for Case 1 and 3, the linear
#utter speed, ;*

L
"6.28509, is identical at uN "0)2 for both cases. Now, by applying the

centre manifold theory and normal form method to system (3), we obtain coe$cients of
formula (14) in terms of ba3 and bm3 :

u
0
"0)08404421382, u(0)"!0)06321776140, a (0)"0)1580161751,

a(0)"!0)00007444878252ba3#0)00006278101583bm3 ,

b(0)"0)00002501938337ba3#0)000006148895571bm3 .

Notice that the non-linear coe$cients ba3 and bm3 only a!ect the coe$cients a (0) and b (0).
The frequency relation in terms of ba3 and bm3 is given by

u"0)08404421382#A!0)063217761450

!0)1580161751
0)00002501938337ba3#0)00006148895571bm3

!0)00007444878252ba3#0)00006278101583bm3B d. (17)



Figure 4. Dynamical response for Case 3. (a) Frequency; (b) amplitude of pitch motion; (c) amplitude of plunge
motion: *, analytical prediction;

3 3 3
, numerical result.
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From the above formula, it is clear that when either ba3 or bm3 is zero, the other non-linear
coe$cient bm3 or ba3 will not a!ect the resulting frequency. Hence, the frequency u depends
only on d and is independent of bm3 or ba3 . In Case 1, bm3"0, and the frequency relation is
independent of the value of ba3 . When both coe$cients are present but with ba3Abm3 as in
Case 3, it is easy to verify that the e!ect due to non-linear coe$cient bm3 can be neglected.
Therefore, Case 3 can be considered to be similar to Case 1.

Unlike the frequency relation, the amplitude equations given in equation (16) indicate
that the amplitude of LCOs is more sensitive with the variation in the non-linear coe$cients
ba3 and bm3 . This observation is indeed con"rmed by the results reported in Figures 2 and 4.

6. CONCLUDING REMARKS

In this paper, we derived a frequency relation for the self-excited two-degree-of-freedom
aeroelastic system with structural non-linearities represented by cubic springs. Together
with the amplitude equations derived in our previous study, the limit cycle oscillations for
the self-excited system can be predicted analytically. Our study shows that the frequency
and amplitude of LCOs do not depend on the choice of initial conditions. Moreover, it has
been shown that when the structural non-linearity is applied only in one-degree-of-freedom,
or when non-linearities appear in both pitch and plunge degrees of freedom but with one of
the non-linear coe$cient much greater than the other non-linear term, then the frequency
relation is not a!ected by the non-linear coe$cients ba3 or bm3 . However, the corresponding



Figure 5. Dynamical response for Case 4. (a) Frequency; (b) amplitude of pitch motion:*, analytical prediction;
3 3 3

, numerical result.
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amplitude of the LCO is sensitive with the variation in ba3 and bm3 . The mathematical
approach presented here not only provides an accurate agreement with numerical results
obtained by using a fourth order Runge}Kutta time-integration scheme, but it also leads to
a better understanding of non-linear aeroelasticity especially near the bifurcation points. In
the present work, we focus on the study of LCO through a Hopf-bifurcation. The period of
doubling phenomenon in which an LCO subsequently gives rise to a two-period orbit by
means of a #ip-bifurcation has been detected in aeroelastic system with cubic structural
non-linearities [1]. The phenomenon is interesting and important, since it may provide
a route leading to the investigation of the period-two and chaotic motions. However, since
the bifurcation analysis will now depend upon periodically varying parameters instead of
"xed points in a Hopf-bifurcation, a general procedure based on time-dependent centre
manifold theory and time-dependent normal form will be required.
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APPENDIX A: COEFFICIENTS IN EQUATIONS (2)
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APPENDIX B: COEFFICIENTS IN EQUATIONS (3)
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APPENDIX C: EXPRESSIONS FOR THE MATRICES A, B, AND F IN EQUATIONS (5)
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21
"jc
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1
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L
B
2
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22
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L
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L
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APPENDIX D: COEFFICIENTS OF EQUATION (16)
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APPENDIX E: NOMENCLATURE

a
h

non-dimensional distance from airfoil mid-chord to elastic axis
b airfoil semi-chord
h plunge displacement
m airfoil mass
r amplitude of m
ra radius of gyration about the elastic axis
t time
xa non-dimensional distance from the elastic axis to the centre of mass
C

L
(q), C

M
(q) aerodynamic lift and pitching moment coe$cients

G(m), M(a) non-linear plunge and pitch sti!ness terms
P(q), Q(q) externally applied forces and moments
R amplitude of a
; free stream velocity
;* non-dimensional velocity, ;*";(bua)
;*

L
linear #utter speed

X, > system variable vectors
<, Z complex variables
m non-dimensional plunge displacement, m"h/b
a pitch angle of airfoil
u frequency of the motion
k airfoil/air mass ratio, k"m(nob2)
q non-dimensional time, q";t/b
d perturbation parameter
t
1
, t

2
constants in Wagner's function

3
1
, 3

2
constants in Wagner's function

ba , ba3 constants in non-linear pitch sti!ness term M(a)
bm , bm3 constants in non-linear plunge sti!ness term G(m)
fm, fa viscous damping ratios in plunge and in pitch
uN frequency ratio, uN "um/uaum , ua natural frequencies in plunge and in pitch
/(q) Wagner's function
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